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A class of hopscotch methods is considered for the solution of a heat equation with 
constant coefficients, defining the heat flow in a thermal print head. The behavior of the 
finite difference schemes for the numerical solution of the heat equation is studied for 
both isotropic and anisotropic media. 

1. INTRODUCTION 

The flow of heat in a thermal print head subject to a discontinuous heat source 
generated in a thin film deposited on the surface of a glass substrate was first 
considered in a paper by Chen [l]. An unusual feature of Chen’s model was that 
the three-dimensional heat equation for the substrate required the solution of a 
two-dimensional heat equation for the thin film as one of the boundary conditions. 
The complex nature of the mathematical problem made a general analytical 
solution impossible. Thus, numerical analysis techniques played an important role 
in obtaining a solution to such a problem. 

In [I] the partial differential equations for the heat flow were solved numerically 
by the implementation of an explicit finite difference scheme for the substrate 
problem and an implicit method for the thin film. However, the use of the explicit 
scheme was severely restricted by convergence criteria. In a paper by Morris [9] 
alternating direction and locally one-dimension methods (see Mitchell [S]) were 
applied to the solution of the problem of [ 11. Such schemes required the solution of 
sets of simultaneous equations which was time consuming and restrictive on the size 
of problem to be solved. 

Following original work by Gordon [4], (see also Saul’iev [ 13]), a fast algorithm 
for the solution of partial differential equations was developed by Gourlay [5]. The 
method was called the hopscotch algorithm because of the way the scheme pro- 
gressed through the time-space grid. Later a more general class of hopscotch 
methods was introduced by Gourlay and McGuire [6]. The structure and pro- 
perties of these algorithms made them particularly easy to implement. Recently 
Morris [lo] adapted a hopscotch technique to a modified model of the original 
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thermal print head problem in which the physical heating element embedded in the 
thin film was replaced by an incident normal beam of electrons. Good computational 
results were obtained, and it was concluded that the hopscotch scheme was a very 
attractive method to use for the solution of complicated physical problems. 

Up until this point the discussions with regard to the heat flow in a thermal 
print head have been restricted to considering the substrate and thin film as 
isotropic media. (A homogeneous solid is said to be isotropic if it is of such material 
that when a point within it is heated, the heat spreads out equally in all directions.) 
When certain directions are more favorable for the conduction of heat than others 
then the medium is said to be anisotropic. However, finite difference methods used 
to date are unsatisfactory for anisotropic partial differential equations in that poor 
accuracy is achieved in practice. 

Recently some techniques have been produced which improve the accuracy 
of the results. Watts [ll, 121 presented a method which required an iterated 
solution of a system of simultaneous linear equations. A line successive over- 
relaxation (L.S.O.R.) technique was used with the columns orientated in the 
direction of high conductivity. A column correction process requiring the solution 
of a tridiagonal set of equations was implemented after a number of L.S.O.R. 
sweeps to bring the solution vector closer to its correct values. Such a scheme, 
however, was slower than any available method for the solution of isotropic 
problems and was only applicable to equilibrium problems. 

Chu, Morton, and Roberts [3] and Chu and Johannson [2] investigated the 
numerical solution of the anisotropic heat conduction equation in which the axes 
of the finite difference grid were at an angle to the principal axes of conductivity. 
The authors endeavored to solve the problem of the anisotropy by transforming 
the anisotropic partial differential equation into a nonanisotropic partial differential 
equation by a rotation of axes. In this case a cross derivative term was introduced, 
and the authors considered finite difference methods for this equation. We will 
adopt the alternative strategy of considering the original partial differential 
equation per se and consider the properties of the class of hopscotch methods as 
described in 161. 

In Section 2 we briefly describe the physical problem and define the mathematical 
model. The hopscotch schemes are outlined and analyzed with respect to the 
anisotropic terms in Section 3. In Section 4 the computational results for several 
numerical experiments are reported. The paper is concluded in Section 5. 

2. THE PHYSICAL PROBLEM AND ITS ASSOCIATED MATHEMATICAL FORMULATION 

A thermal print head is composed of a glass substrate surmounted by a thin film 
of a material with high thermal conductivity properties. Embedded in the thin film 
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PRINTING 

-SURFACE 

FIG. I. A 5 x 5 matrix thermal print head (top view). 

HEATING GLASS THIN 
RESISTOR SUBSTRATE FILM 

FIG. 2. A single element of the matrix (side view). 

layer is a matrix of heat resistors (Figs. 1 and 2). When a current is passed through 
the resistors their immediate neighborhood is heated. When heat is applied to a 
thermally sensitive paper, a chemical reaction will occur if the heat induces a 
temperature above a certain threshold. By heating specific elements in the matrix, 
characters can be produced on the paper. When the current is switched off, the 
glass substrate acts as a heat sink allowing the printing surface to cool rapidly. 

This printing technique can be made faster than conventional mechanical devices 
if an optimal “time on/time off” cycle for the current in the thermal print head 
can be found. In addition the physical properties of the materials used in the 
manufacture of the thermal print head need to be considered carefully. For a given 
set of physical parameters, a given on-off switching of the heat source can cause 
an overall rise in the print head temperature which in turn results in indistinct 
characters being produced on the print paper. In this case it is likely that the 
off-time between each character-printing would have to be increased thereby 
slowing down the print cycle. 

In our investigation several numerical simulations of the thermal print head are 
made for varying physical constants and in particular those which give rise to 
anisotropy. 

The mathematical model [l] assumes that the thickness of the thin film is so 
small in comparison with that of the glass substrate, and the thermal conductivity 
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coefficient for the thin film to be sufficiently high so as to make the temperature 
gradient in the vertical direction negligible. If we represent the vertical direction 
in a Cartesian coordinate system (x, y, z, t) by z, this effectively means that the 
thin film has no dimension in the z coordinate other than to give it a thermal 
capacity due to a thickness D of the thin film, say. 

The heat equation governing the heat distribution in the thin film is then 

where u = u(x, y, 0, b) denotes the temperature in degrees centigrade at a point 
(x, y, 0, t) in the thin film. K1 is the thermal conductivity of the thin film in the 
x direction, ~2 is the corresponding thermal conductivity in the y direction, p is the 
density, C is the specific heat, urn is the ambient temperature, and h, is the convective 
heat transfer coefficient between the thin film and air. The term, 

1 
2n-2 

s(x,y,t)= 1- c (-l)iH(t-rJ I 
z-0 \ 

i m-1 m-1 
x ( jg” L;” [Nx - j/3 - 4 - Nx - (j +- l)fl + a)] 

x [My - k/3 - a) - H(y - (k -t l)P + CX),/, 

where H(0) is the Heaviside function defined by 

(0 m = ,] 8 < 0, 
6 > 0, 

represents a heat source with discontinuous in both time and space for a print 
head composed of an m x m matrix of heating elements with n on-off switches. 
The ti are defined such that ti , i = 0, 2, 4 ,..., 2n - 2, are the switch-off times and ti, 
i = 1, 3, 5,. .., 2n - 3, are the switch-on times for the heat source. The heat resistors 
are defined as the squares 

where j3 is the side length of a single print element, and q is the heat generated in 
watts per unit volume. 

The initial condition u(x, y, 0,O) = f(x, y, 0), 0 < x, y < I and the boundary 
conditions au/a7 = 0, x = 0, I; 0 6 y < I, y = 0, I; 0 < x < 1 are given for 
Eq. (1) where I = m x /3 is the overall side length of the print head, rl is the 
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outward drawn normal to the edges of the thin film, andfis a continuous function. 
We assume continuity of initial and boundary conditions. 

In the forthcoming section, for simplicity of analysis, we will consider only a 
single heat element. We will further assume that the heat resistor covers the entire 
upper surface of the print head, i.e., 01 = 0. The case in which the heat source is 
discontinuous in space (a > 0) as well as in time will be considered in a later paper. 

The region in which the solution is required is defined by, 

i?=Rx[O<t<Tl, 

where R = {(x, y, z); 0 < x, y, z < fi} and we denote the boundary of R by aR so 
that the solution of Eq. (I), with initial conditions and boundary conditions, 
constitutes a boundary condition on a&,, for the total print head. 

The equation governing the temperature distribution u in the glass substrate is 

i3U Kg a2U 

at= 
-- -- 

~4, 3x2 
+ 

Kq a224 
+ 

Kg a2U 
-- 

plcl w plot 822 
(2) 

subject to the initial condition 

4% Y, z, 0) = f(x, YY z) O<X,Y,ZdB 

and the boundary conditions 

au/a7 = 0 on aLo,, and a+,,, , 

u(x, y, /I, t) = g(x, y, /I, t) and u(x, y, 0, t) is the solution of Eqs. (1) and (2) on 
aa,=,,, , respectively. KS, K~ , K~ are the conductivity coefficients of the substrate 
in the x, y, and z directions, respectively, p1 , is the density, and C, is the specific 
heat. The print head has been assumed to be a cube for programing convenience; 
the results are easily extendible to any rectangular shaped print head. 

3. THE NUMERICAL METHODS 

In this section we shall consider the odd-even hopscotch, line hopscotch, and 
A.D.I. hopscotch difference schemes [6,7] for the numerical solution of Eqs. (1) 
and (2) with their respective initial/boundary conditions. 

A rectilinear grid is superimposed on the region of computation i? where the 
mesh spacings in the space variables are taken equal; namely 

A, = A, = Ll, = h, 
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and the mesh spacing in the time dimension A, is denoted by 7. The mesh ratio 
r = T/h2 is taken to be constant throughout. We denote by t& the value of the 
unknown u at the point (ih,jh, kh, en) = (x, y, z, t) i, j, k = 0, l,..., iV, Nh = p, 
and m = 0, 1, 2 ,... . 

We will use the central difference operators, 

with similar expressions for Sy and 6, . 
We will write Eq. (1) in the form 

au/at = Ll4 + d(x, y, t), (3) 

where L = a(a2/ax2) + b(a2/ay2) + c is a linear elliptic differential operator and 

a = dpC, b = K21PC, c = -h,lDpC, 

4x, y, 0 = @, Y, O/PC + h,umlDpC. 

The general hopscotch scheme for Eq. (3) is given by 

ii+1 
hi - +j;+q,p + #fl@) ug+1 = 24; + T(e;LF’ + ?$Lf)) 24; 

+ 7(@j+ldym+l + ?7;+l&)m+l) (4) 

+ T(e;dp + 7$dpy 

d!?” + d!?‘” = d?‘! 23 23 13 

with the restrictions 
e;+‘+e;= 1, 

L, = Lkl’ + LF) is the finite difference replacement for the differential operator 
L = L(l) + Lc2) where L(l) and Lt2) are one-dimensional operators, namely 
L(l) = a(a2/ax2) + c1 and similarly L t2) = b(a2/i9y2) + c2 with c = c1 + c2 . Lf’ 
and LL2’ can be any consistent B-operators (in the sense of [5]). However, to be 
precise, we will assume the simplest difference replacements of L(l) and Lc2) given by 

Defining 

L(l) E (a/h2) 6 2 + c h 0 1 = L(l) + o(h2), 

Lf’ = (b/h2) a,2 + c2 = L(‘) + o(h2). 

rg; = 7); = 
! 
:, i + j + m even, 

ii-jfmodd, 
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we obtain the odd-even hopscotch method 

The computational algorithm proceeds as in [5] the details of which are omitted 
here. 

Writing Eq. (5) over two time steps and eliminating the term 0~J+‘L,&‘;+’ we 
obtain 

WL+2 u<j - 7eyL&;+2 + ug = 2u;+1 - u: . 03) 

When 02 is zero, Eq. (8) reduces to the explicit scheme 

and, consequently, for half the points an extremely simple substitution attains the 
approximation required at the next time level. Full details of the implementation 
of this fast odd-even hopscotch algorithm are given in [5]. 

The local truncation error for the odd-even hopscotch scheme with the difference 
operator Lh = (a/P) az2 + (b/P) SW2 + c is obtained as follows: Writing Eqs. (6) 
and (7) such that i + j + m is even in both cases and expanding Lh we obtain 

ZAG+’ = (I - 2ar - 2br + TC) u: + ar(u,“llj + u:J + br(uz+, + Z/E-~) -t TdE , 
(9) 

(1 $ 2ar + 2br - TC) uy; = z&’ + ar(uri,j + uLli) + br(uyj+, + ukl) + TdGf. 
(10) 

Eliminating the U: term from Eqs. (9) and (10) gives 

(1 + 2nr + 2br - TC) uz’l= (1 - 2ar - 2br + TC) uzel+ 2ar(ui”,lj + &) 

-f- 2br(ug+, + u:-~) + 2Tdz. (11) 

A Taylor series expansion gives 

g + (2ar + 2br - TC) i $ 

= a $ + b g + cu + d + ; (a $$- + b $) + 4~~ + h4). 
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Therefore, the principal part of the local truncation error is 

Defining 

gives another hopscotch method. 

m+1 
uij = u; + TL& + rd; i + m even, (14) 

m+1- 
4j TL,&+~ = u; + rd; i f m odd. (15) 

It is easily seen that this algorithm requires the solution of a tridiagonal system 
of equations to obtain approximate values at points along alternating i-grid lines, 
i.e., in the y direction. The above method is called the line hopscotch scheme. 
Similarly defining 

0; = 7; = I 
j + m even, 
j + m odd 

produces a line hopscotch algorithm with the implicit scheme orientated along the 
x direction. 

On replacing the ~9: in Eq. (8) by that defined in Eq. (13) it is easily seen that a 
fast line hopscotch can be obtained. 

Writing Eqs. (14) and (15) for i + m even and eliminating the U: terms leads 
to the equation 

(1 + 2ar - bra,2 - c-c) uz+’ 

= 2ar(z& + u~!~J + (1 - 2ar + brSv2 + TC) uz-’ + 2rd$. 

Taylor series expansion gives 

(16) 

=a$+b$+cu+d+;(a$+b$) + O(T2 + h4). 

The principal part of the line hopscotch truncation error is, therefore, 

7 a2U bT2 ak h2 
(hr-TC)------- 

2 at2 2 atzap 12 
,g+b$). (17) 



324 MORRlS AND NICOLL 

When 

0; = $+I= 
I 

i + m even, 
i + m odd 

we have the A.D.I. hopscotch scheme 

or 

(1 - 7L?)) ,;+r = (1 + &‘) 24; + &)m+l + &jm> i + m even, (19) 

(1 - TL$f)) ,$+l = (1 + 7LF)) u; + &)m+l + &‘1”) i + m odd. (20) 

With the above three point replacements for Lt’ and Lk2’ Eq. (19) requires the 
solution of a tridiagonal system of equations along alternate i-grid lines, and, 
therefore, Eq. (20) now becomes an explicit process. 

Similar analysis to that for the truncation error for the line hopscotch method 
gives for the truncation error of the A.D.I. scheme 

bT2 a4U ad@’ T2 a-2&2) h2 
--- 

2 amp 
+(TC1-k)T~----- 2 at2 12 a$$-+b$). (21) 

Therefore, we must choose dc2’ = 0, d(l) = d to eliminate the time derivatives 
of a Heaviside function from the analysis. 

The form of the principal truncation errors, Eqs. (12), (17), and (21) is to prove 
crucial in the application of the hopscotch methods for the anisotropic problems. 

Consider Eq. (12); here the truncation error contains o(T) terms dependent 
upon both of the diffusivity coefficients a and b. Consequently, the direction of 
anisotropy is not going to prove significant for this method since the error term 
will contain a substantially large anisotropic coefficient. This in turn will be 
mirrored by relatively large errors in the computed solutions. 

In contrast, the principal truncation error Eq. (17) of the line hopscotch method 
contains an O(T) term involving just the diffusivity coefficient a when the implicit 
scheme is orientated along the direction of the x-axis. To propose the line hopscotch 
scheme with the direction of the implicit scheme orientated along the y-axis will 
clearly replace the coefficient a by b in the O(T) term (together with the obvious 
changes in the remaining terms). In this case however, if one coefficient is large 



ANISOTROPIC THERMAL PRINT HEAD PROBLEM 325 

relative to the other, it will be important which of the two possible line hopscotch 
schemes is used. For example, if a is small relative to b then the scheme as proposed 
by Eqs. (14) and (15) should produce significantly more accurate results than its 
complement scheme. 

Similarly in considering the principal truncation error of the A.D.I. hopscotch 
scheme given by Eq. (21), we find once again that just one dit?usivity coefficient 
appears in the O(T) part of the principal truncation error. For the same reasons 
outlined above, the direction of the implicit scheme in the A.D.I. hopscotch method 
should be chosen so that this coefficient is the smaller of the two, that is the direction 
of the implicit scheme should be chosen parallel to the direction of anisotropy. 

The above hopscotch algorithms can easily be extended to solve numerically 
the three-dimensional heat equation (2) which can be written in the form 

2% Lu 
at where L=a&+bE+c$ 

8Y2 

and 

We define the finite difference operator 

which is split such that 

and L(2) = J- 6 2 
h h2 II’ 

The general three-dimensional hopscotch scheme is 

,g;, zzz $jk = 
i 

for i + j + k + m even, 
for i+j+k+modd, 

gives the odd-even hopscotch scheme 

m+1 
Uijk = u;k + %!+;k for i + j + k + m even, (23) 

mc1 
%k - rL,ug:l = UEk for i+j+k+modd, (24) 



326 MORRIS AND NICOLL 

with truncation error 

(a + b + c)r T $ 

Defining 

i + k + m even, 
i + k + m odd, 

we obtain a line hopscotch algorithm in three dimensions. 

u;p = uyJli + TL$4;k for i + k + m even, (26) 
WI+1 

Uijk - 7L/p;;l = z&. for i + k -+ m odd, (27) 

with truncation error 

ar T a2u i*u 5 

at2 2 ( 
b 

-++ at2 ay2 &j -; (~7% + b+ + c$j. (28) 

Finally 

,gm = “f’ 1 1 for i + k + m even, 
z?k %h 0 for i + k + m odd, 

gives a three-dimensional A.D.I. type scheme 

(2) (1 - TLh (1) )u;:‘= (1 + TL/& )ug, for i + k + m even, (29) 

(1 - TL;)) U;;’ = (1 + TLP’) U;;, for i + k + m odd, (30) 

where the truncation error is given by 

a,. T i?!t - 7” b a4u 

at2 2 -++ at2 ay2 &j -;(cz~+b$+c$j. (31) 

Our remarks regarding the orientation of the implicit portion of the schemes 
for the two-dimensional hopscotch schemes are clearly relevant once again here, 
where we assume a unidirectional anisotropy (the case of two directions of 
anisotropy will be considered in a future paper). The normal boundary conditions 
are applied by using the simple difference replacements &/ax lz.O = (u$ - zCIjk)/2h 
and au/ax LB = (u~~+~)~~ - uyN-l)il, )/2/r with similar expressions for au/ay llzO 
and 8u/8y jV=B , and, therefore, by the nature of the hopscotch schemes no boundary 
correction techniques are required. 
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4. NUMERICAL RESULTS 

A series of experiments was carried out to test the hopscotch schemes, outlined 
in Section 3, for the numerical solution of the thermal print head model in both 
isotropic and anisotropic media. 

Assuming the heat source to be constant (t, = co) and with the additional 
restrictions 01 = 0, U, = 0, u(x, y, /3, t) = g(x, y, /3, t) = 0 for all time, a 
theoretical solution to Eqs. (1) and (2) with associated initial/boundary conditions 
can be obtained, namely, 

u = t eyt cos y cos y + %)[l -T) +e~tcos~cos~sin~, (32) 

where 

n2(‘% + ‘d 
Y=- 

~2PlG ’ 
h = _ n2(‘% + K4 + Kg) 

~2PlG ’ 
h,12 

D = ,fJC((‘G + K4)/&1 - cK1 + ‘d/PC> ’ 

(33) 

To obtain a positive value for the thin film thickness D we are restricted to 
making the diffusivity of the substrate greater than that of the thin film. Therefore, 
although the solution (32) to the print head model is not physically reasonable we 
are able to obtain comparisons of the hopscotch methods and also determine their 
accuracy. 

It is to be noted that no theoretical solution covering the whole print head is 
known for a discontinuous heat source. However, a theoretical solution can be 
obtained for a single heat element thin film equation in which there is a single 
on-off switching namely, the heat source initially on, is switched off after t, sec. 

With a! = 0 and U, = 0 the solution to Eq. (1) is 

D9 u=7(l-e u(t Q)(l - H(t - to)) + cos 7 cos -y e(v+y)t, (34) 
0 

where 

h, 
‘= -DpC 

and +K, + K2) 
Y = - pzpc . 

The theoretical solution for the discontinuous heat source problem provides a 
further means of testing the hopscotch schemes. 

Isotropic Problems for a Single Element 

In order to obtain a basis for comparison for the methods under the assumptions 
of anisotropy, we first considered the results obtained by the hopscotch methods 
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on isotropic problems. To obtain an estimate of the accuracy in this case (and to 
ensure the programs were completely debugged) the heat problem, for which a 
theoretical solution is known, was solved first. The values of the isotropic 
parameters used are as follows h = l/IO, K~ = K~ = 0.5, p = 24.42, C = 2.6, 
K~ = K4 = Kg = 0.005, p1 = 0.12, c, = 3.0095, h, = 0.000679, D = 0.00011045 
(from Eq. (33)), U, = 0, q = 10. 

The results obtained using the hopscotch methods are indicated in Table I. 
We would expect, as a result of the analysis of the principal truncation errors, that 
the numerical errors (the difference between the theoretical and computed solutions) 
would be of the same order of magnitude. This is clearly confirmed by the results 
of Table I. 

TABLE I 
Maximum Absolute Error at 100 Time Steps in the Print Head 

Y Odd-even Line A.D.I. 

0.1 4.050 x 10-a 4.050 x 10-4 4.051 x 10-4 
0.3 1.134 x 10-s 1.134 x 10-a 1.135 x 10-s 
0.6 2.039 x lO-s 2.043 x lO-s 2.050 x lO-s 
1.0 2.937 x 10-a 2.952 x 1O-s 2.979 x 1O-s 

It is to be noted that an increase of the value of the heat source by a factor f, 
say, brings about a corresponding increase in both the theoretical and compu- 
tational solutions and, thus, variations in the heat source term have been omitted. 

To investigate the effect of the discontinuous heat source upon the numerical 
results, the problem for which a theoretical solution is known in the thin film only, 
was also solved. The physical parameters used were the same as for the previous 
example. The maximum errors are quoted in Tables II and III. The result of the 
discontinuity is to increase the size of the errors by a factor of ten just after the 
switch off as compared with the errors just before the switch off. However, these 
errors do not grow for increasing time but remain of the same order of magnitude. 

TABLE II 
Maximum Absolute Error at 50 Time Steps in the Thin Film 

r Odd-even Line A.D.I. 

0.1 6.291 x 1O-5 6.292 x 1O-5 6.292 x lO-5 
0.3 1.839 x lo-’ 1.840 x 10m4 1.841 x lo-* 
0.6 3.534 x IO-4 3.539 x 10-a 3.545 x 10-a 
1.0 5.577 x 10-4 5.594 x 10-e 5.618 x IO-’ 
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TABLE III 

Maximum Absolute Error at 100 Time Steps in the Thin Film 

r Odd-Even Line A.D.I. 

0.1 2.542 x 10-4 2.637 x 1O-4 2.698 x 1O-4 
0.3 6.635 x lo-’ 7.170 x 10-a 7.343 x 10-a 
0.6 1.163 x 1O-3 1.269 x 1O-3 1.301 x 10-a 
1.0 1.745 x 10-a 1.861 x 10-Z 1.911 x 10-a 

As we mentioned above the set of parameters used in order that a theoretical 
solution can be obtained may be regarded as nonphysical. To test the hopscotch 
methods on a realistic isotropic problem the following set of parameters was chosen 
for a silver thin film surmounting a glass substrate, i.e., 01 = 0, ,B = 1 = 1, 
h = l/lO,r = 1.0, K~ = K~ = 1.0,~ = 10.49, C = 0.0556, K~ = K~ = K~ = O.OO28, 

p1 = 2.4, C, = 0.2, h, = 0.000053, u, = 0, D = 0.000015, q = 10.0. It is to be 
noted that for a discontinuous heat source no theoretical solution is known for the 
print head problem under the above conditions. 

FIG. 3. Graphs’ of temperature distribution in an isotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the odd-even hopscotch algorithm. 

FIG. 4. Graphs of temperature distribution in an isotropic thermal print element for a single 
switch off of the heat source; the solution obtained using the line hopscotch algorithm. 

1 In Figs. 3-15, graphs 1, 2, and 3 denote the temperature distributions in the thin film, and 
first and third substrate layers, respectively. 
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FIG. 5. Graphs of temperature distribution in an isotropic thermal print element for a single 
switch off of the heat source; the solution obtained using the A.D.I. hopscotch algorithm. 

The print element was examined for a single switching of the heat source where 
f,, = 100~. Graphs in Figs. 3-5 represent the temperature distribution at a fixed 
point (X = y = 0.5) and for z == 0.0, 0.1, and 0.3 where 0 < t :+ 2007 as 
computed by the odd-even, line, and A.D.I. hopscotch methods, respectively. 

Consideration of the solutions obtained in Figs. 3-5 indicates that there is 
little to choose between the three variants of the hopscotch method for the 
isotropic problem. The numerical results agree with the results previously reported 
in [9] using A.D.I. and L.O.D. methods. The amount of computation, however, 
represented by Figs. 3-5 is substantially less than that required in [9]. We have 
quoted just one of the variants of the possible line and A.D.I. hopscotch schemes, 
the results using the other variants were (obviously) precisely the same. 

Anisotropic Problems.for a Single Element 

The computational experiments for the isotropic problems were repeated using 
the following physical constants 01 = 0, j3 = 1 = 1, h = I/10, K~ = 1 .O, K~ = 100.0, 
p = 15.154, C = 2.664, K~ = 0.005, Kq = 100.0, Kg = 0.005,,+ = 6.5, C, = 6.019, 
h, = 0.000679, D = 0.00003936, u,. = 0, 9 = IO. The print head is, therefore, 
highly anisotropic in the y direction. 

Both the line and A.D.J. hopscotch schemes were implemented such that they 
were aligned with the direction of implicitness in the hopscotch scheme 
(a) perpendicular to the anisotropy and (b) paraIle1 to the anisotropy. 

As a result of the anisotropy the theoretical solution in both the continuous and 
discontinuous heat source problems (32) and (34) reach a steady state after only 
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a few time steps. For this reason we have only considered a comparison of the 
computational errors in the continuous heat source problem after ten time steps 
(Table IV) and for a ten steps on/ten steps off period for the discontinuous problem 
(Tables V and VI). 

TABLE IV 

Maximum Absolute Error at 10 Time Steps in the Print Head 

r Odd-even Line (a) A.D.I. (a) Line(b) A.D.I. (b) 

0.1 7.884 x IO-4 7.885 x 1O-4 8.107 x IO-” 2.432 x 1O-3 2.432 x 1O-3 
0.3 2.815 x 1O-2 2.815 x lo-” 2.738 x 1O-L 3.488 x 1O-3 3.494 x 10-S 

0.6 1.353 x IO-’ 1.353 x IO-’ 1.316 x 10-l 5.111 x 10-4 3.451 x to-4 

1.0 3.217 x 10-l 3.216 x 10-l 3.147 x IO-’ 4.150 x 10-a 4.109 x 10-s 

TABLE V 

Maximum Absolute Error at 10 Time Steps in the Thin Film 

Y Odd-even Line (a) A.D.I. (a) Line (b) A.D.I. (b) 

0.1 2.683 x IO-” 4.949 x 10-d 5,494 x IO-4 1.529 x 10m3 1.542 x lO-3 
0.3 1.785 x lo-” 8.520 x lo-? 1.634 x 10m2 2.088 x 1O-s 2.290 x 1O-3 

0.6 8.557 x lo-” 1.777 x 10-Z 7.939 x 10-z 5.116 x lo-” 8.824 x 1O-4 
1.0 2.023 x 10-l 2.009 x IO-’ 1.900 x 10-l 3.786 x 10ms 2.385 x 1O-3 

TABLE VI 

Maximum Absolute Error at 20 Time Steps in the Thin Film 

r Odd-even 

0.1 6.764 x lO-4 
0.3 1.597 x lo-” 
0.6 3.096 x 1O-2 
I.0 8.884 x lO-s 

Line (a) 

8.429 x 1O-4 
3.679 x lO-2 
1.775 x 10-Z 
8.661 x IO-3 

A.D.I. (a) 

7.252 x IO-$ 
1.656 x IO-* 
3.553 x IO-” 
8.324 x lO-3 

Line (b) 

2.522 x 1O-3 
2.654 x 1O-3 
1.329 x lO-3 
2.417 x 10m3 

A.D.I. (b) 

2.643 x lO-3 
2.802 x 1O-3 
1.448 x IO-3 
2.340 x lO-3 

In order to ascertain the behavior of the hopscotch methods for the anisotropic 
problem we have used a theoretical solution once again. In this way the effect of 
aligning the implicitness parallel to or perpendicular to the direction of anisotropy 
is then apparent. 
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FIG. 6. Graphs of temperature distribution in an anisotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the odd-even hopscotch algorithm. 

FIG. 7. Graphs of temperature distribution in an anisotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the perpendicular line hopscotch 
algorithm. 

FIG. 8. Graphs of temperature distribution in an anisotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the perpendicular A.D.J. hopscotch 
algorithm. 

FIG. 9. Graphs of temperature distribution in an anisotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the parallel line hopscotch al- 
gorithm. 
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Fw. 10. Graphs of temperature distribution in an anisotropic thermal print element for a 
single switch off of the heat source; the solution obtained using the parallel A.D.I. hopscotch 
algorithm. 

In Table IV it becomes clear that we must ensure the implicitness in the line and 
A.D.I. hopscotch methods coincides with the direction of anisotropy. Moreover, 
the results obtained by the odd-even hopscotch scheme are hopelessly inaccurate. 
These results clearly support our conjecture made in Section 3. We would surmise, 
therefore, that when applying our algorithms to the anisotropic problem with 
realistic physical data we would obtain significantly differing behaviors. To this 
end the anisotropic data 01 = 0, ,l3 = I = I, h = 0.1, r = 1 .O, K~ = 1 .O, Kz = 100.0, 
p = 10.49, C = 0.0556,~ = 0.0028, K,, = 0.28, Kg = 0.0028,pl = 2.4,C, = 0.2, 
h, = 0.000053, q = 10, U, = 0.0, D = 0.000015 with the initial temperature 
distribution U(X, y, z, 0) = 0, was employed and the results obtained using the 
hopscotch methods are reported graphically in Figs. 6-15. Figures 6-10 depict the 
temperature distribution in the print element computed by oddeven, perpendicular 
line and A.D.I., and parallel line and A.D.I. hopscotch algorithms, respectively, 
at the fixed points (X = y = 0.5, z = 0.0, 0.1, 0.3) for a single switching of the 
heat source t,, = 1007, and 0 < t < 2007. A comparison of these shows that the 
parallel line and A.D.I. hopscotch methods produce physically realistic temperature 
distributions whereas the odd-even and perpendicular line and A.D.I. hopscotch 
methods work very poorly on the anisotropic problem. The contrast between the 
methods is even more dramatic when multiple switchings are effected as depicted 
in Figs. 1 l-15. 

In Fig. 11, the odd-even hopscotch method has produced a distribution which 
has a rapid growth with no indication of a cooling period which exists when the heat 

5W3/3-3 
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source is switched off. The same effect is apparent with the perpendicular line and 
A.D.I. methods as shown in Figs. 12 and 13, respectively. However, in using the 
parallel line and A.D.I. hopscotch methods, the cooling effect is apparent in Figs. 14 
and 15 and the steady temperature pattern is obtained after approximately 
six cycles. 

FIG. 11. Graphs of temperature distribution in an anisotropic print element for a print cycle 
of 10~; the heat source being on for 5~ and off for ST-the odd-even hopscotch algorithm. 

FIG. 12. Graphs of temperature distribution in an anisotropic print element for a print cycle 
of 107; the heat source being on for 57 and off for 5s - the perpendicular line hopscotch al- 
gorithm. 

FIG. 13. Graphs of temperature distribution in an anisotropic print element for a print cycle 
of I&; the heat source being on for 5~ and off for 57 - the perpendicular A.D.I. hopscotch 
algorithm. 
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4, 

FIG. 14. Graphs of temperature distribution in an anisotropic print element for a print cycle 
of 10~; the heat source being on for 57 and off for 5s - the parallel line hopscotch algorithm. 

FIG. 15. Graphs of temperature distribution in an anisotropic print element for a print cycle 
of 10~; the heat source being on for 5s and off for 5s - the parallel A.D.I. hopscotch algorithm. 

From these latter figures the operating conditions for the thermal print head can 
be determined. That is, the highest peaks in Graphs (1) shown in Figs. 14 and 15 
can be chosen so that this temperature is above that required for the chemical 
reaction to take place in the thermally sensative print paper; whereas, the lower 
troughs are chosen so that these points are below the critical temperature. We have 
chosen a heating cycle in which the heat source is on for the same amount of time 
as it is off, namely on for 57 and off for 57. If the operating conditions are not 
satisfactory in practice (the troughs in Figs. 14 and 15 are not sufficiently low) then 
by adjusting the ratio of “on time” to “off time,” so that a larger cooling time per 
heat cycle is effected, an appropriate cycle can be produced so that “smudging” of 
characters does not occur. For brevity we have omitted the figures illustrating this 
point. 

5. CONCLUDING REMARKS 

It can be concluded from Tables I-111 that there is no signz&ant difference in the 
accuracy of the results produced by the three hopscotch methods when applied 
to isotropic problems Eqs. (32) and (34). This result is further borne out by the 
results of the discontinuous heat source problem illustrated in Figs. 3-5. The 
odd-even hopscotch scheme, however, has a computational superiority over the 
line and A.D.T. hopscotch methods, as it does not require the solution of linear 
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sets of equations at each time step. The line and A.D.I. hopscotch methods. aligned 
in the x and y directions give the same results for isotropic problems. 

The results in Tables IV-VI for the problems, anisotropic in the y direction, 
show that the odd-even, and the line and A.D.I. hopscotch schemes perpendicular 
to the anisotropy are completely inaccurate. In contrast the parallel line and A.D.I. 
hopscotch methods give a computational solution with three figure accuracy. 
Applying the line and A.D.I. hopscotch methods both in the x and y directions 
and the odd-even hopscotch scheme to a discontinuous heat source problem in an 
anisotropic medium, we see from the temperature distribution graphs for the five 
methods Figs. 6-10, that the low accuracy schemes give unrealistic results. The 
temperature distributions for a multiple switching of the heat source Figs. 1 l-1 5 
again show the odd-even and perpendicular directional methods to be subject to 
a large error growth. 

We conclude that for anisotropic problems that the use of the odd-even 
hopscotch method is not to be advocated and the line and A.D.I. hopscotch 
algorithms must be implemented in the direction of high anisotropy. Compu- 
tationally, both methods are equivalent; however, the computing time required 
for the line hopscotch scheme is far less than that for the A.D.I. scheme for which 
there is no fast algorithm. 

In all the numerical experiments the fast odd-even and fast line hopscotch 
algorithms were used whenever possible, i.e., when the solution was not required 
at every time step. 

The computation was carried out on an Elliott 4130 computer at the University 
of Dundee. 
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